Successful fertilization requires that sperm are activated prior to contacting an oocyte. In C. elegans, this activation process, called spermiogenesis, transforms round immobile spermatids into motile, fertilization-competent spermatozoa. We describe the phenotypic and genetic characterization of spe-43, a new component of the spe-8 pathway, which is required for spermiogenesis in hermaphrodites; spe-43 hermaphrodites are self-sterile, while spe-43 males show wild-type fertility. When exposed to Pronase to activate sperm in vitro, spe-43 spermatids form long rigid spikes radiating outward from the cell periphery instead of forming a motile pseudopod, indicating that spermiogenesis initiates but is not completed. Using a combination of recombinant and deletion mapping and whole genome sequencing, we identified F09E8.1 as spe-43. SPE-43 is predicted to exist in two isoforms; one isoform appears to be a single-pass transmembrane protein while the other is predicted to be a secreted protein. SPE-43 can bind to other known sperm proteins, including SPE-4 and SPE-29, which are known to impact spermiogenesis. In summary, we have identified a membrane protein that is present in C. elegans sperm and is required for sperm activation via the hermaphrodite activation signal.
Keywords: C. elegans; Sperm; Sperm activation; Spermiogenesis.
Copyright © 2018 Elsevier Inc. All rights reserved.