Graphene modified TiO₂ composite photocatalysts have drawn increasing attention because of their high performance. Some significant advancements have been achieved with the continuous research, such as the corresponding photocatalytic mechanism that has been revealed. Specific influencing factors have been discovered and potential optimizing methods are proposed. The latest developments in graphene assisted TiO₂ composite photocatalysts are abstracted and discussed. Based on the primary reasons behind the observed phenomena of these composite photocatalysts, probable development directions and further optimizing strategies are presented. Moreover, several novel detective technologies-beyond the decomposition test-which can be used to judge the photocatalytic performances of the resulting photocatalysts are listed and analyzed. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of graphene-TiO₂ composite photocatalysts, which deserves further study.
Keywords: TiO2; electron transport; graphene; photocatalyst.