Compared with MoS2 and WS2, selenide analogs have narrower band gaps and higher electron mobilities, which make them more applicable to real electrical devices. In addition, few-layer metal selenides have higher electrical conductivity, carrier mobility and light absorption than the corresponding monolayers. However, the large-scale and high-quality growth of few-layer metal selenides remains a significant challenge. Here, we develop a facile method to grow large-area and highly crystalline few-layer MoSe2 by directly selenizing the Mo foil surface at 550 °C within 60 min under ambient pressure. The atomic layers were controllably grown with thicknesses between 3.4 and 6 nm, which just met the thickness range required for high-performance electrical devices. Furthermore, we fabricated a vertical p-n junction photodetector composed of few-layer MoSe2 and p-type silicon, achieving photoresponsivity higher by two orders of magnitude than that of the reported monolayer counterpart. This technique provides a feasible approach towards preparing other 2D transition metal dichalcogendes for device applications.