Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution

Sci Rep. 2018 Feb 8;8(1):2676. doi: 10.1038/s41598-018-20377-2.

Abstract

Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text]] orientation, which each have a separation of only 63 pm. Reaching this ultimate resolution even for light elements is possible due to the fact that iDPC-STEM is a direct phase imaging technique that allows fine-tuning the microscope while imaging. Apart from this qualitative imaging result, we also demonstrate a quantitative match of ratios of the measured intensities with theoretical predictions based on simulations.