Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm

Opt Express. 2018 Jan 22;26(2):730-743. doi: 10.1364/OE.26.000730.

Abstract

We present a mask-aligner lithographic system operated with a frequency-quadrupled continuous-wave diode laser emitting at 193 nm. For this purpose, a 772 nm diode laser is amplified by a tapered amplifier in the master-oscillator power-amplifier configuration. The emission wavelength is upconverted twice, using LBO and KBBF nonlinear crystals in second-harmonic generation enhancement cavities. An optical output power of 10 mW is achieved. As uniform exposure field illumination is crucial in mask-aligner lithography, beam shaping is realized with optical elements made from fused silica and CaF2 featuring a diffractive non-imaging homogenizer. A tandem setup of shaped random diffusers, one static and one rotating, is used to control speckle formation. We demonstrate first experimental soft contact and proximity prints for a field size of 1 cm2 with a standard binary photomask and proximity prints with a two-level phase mask, both printed into 120 nm layers of photoresist on unstructured silicon substrates.