Atrial natriuretic factor (ANF) antagonizes vasoconstriction induced by numerous smooth muscle agonists and also lowers blood pressure in intact animals. ANF has particularly marked relaxant effects on angiotensin II-contracted vessels in vitro. Sensitivity to the blood pressure-lowering effect of ANF in vivo appears to be enhanced in renin-dependent models of renovascular hypertension compared with other experimental hypertensive models. The depressor action of low, possibly physiological doses of ANF in two-kidney, one-clip Goldblatt rats is due to a decrease in total peripheral resistance. On the other hand, high doses of ANF can lower cardiac output, particularly in volume-expanded models such as deoxycorticosterone-salt hypertension. ANF markedly inhibits renin secretion in intact animals, probably via increased glomerular filtration rate and load of sodium chloride to the macula densa. This effect is masked when renal perfusion is impaired (e.g., via unilateral renal artery constriction), in which case ANF may stimulate renin secretion slightly. ANF also reduces plasma aldosterone in vivo and inhibits basal and agonist-induced aldosterone release from isolated adrenal cortical cells. This effect appears to be especially marked for angiotensin-induced aldosterone production in vivo and in vitro. These findings indicate that ANF has potentially important interactions with the renin-angiotensin-aldosterone system and suggest a role for ANF in the homeostatic control of blood pressure as well as of extracellular fluid volume.