Sex differences in circadian food anticipatory activity are not altered by individual manipulations of sex hormones or sex chromosome copy number in mice

PLoS One. 2018 Jan 31;13(1):e0191373. doi: 10.1371/journal.pone.0191373. eCollection 2018.

Abstract

Recent studies in mice have demonstrated a sexual dimorphism in circadian entrainment to scheduled feeding. On a time restricted diet, males tend to develop food anticipatory activity (FAA) sooner than females and with a higher amplitude of activity. The underlying cause of this sex difference remains unknown. One study suggests that sex hormones, both androgens and estrogens, modulate food anticipatory activity in mice. Here we present results suggesting that the sex difference in FAA is unrelated to gonadal sex hormones. While a sex difference between males and females in FAA on a timed, calorie restricted diet was observed there were no differences between intact and gonadectomized mice in the onset or magnitude of FAA. To test other sources of the sex difference in circadian entrainment to scheduled feeding, we used sex chromosome copy number mutants, but there was no difference in FAA when comparing XX, XY-, XY-;Sry Tg, and XX;Sry Tg mice, demonstrating that gene dosage of sex chromosomes does not mediate the sex difference in FAA. Next, we masculinized female mice by treating them with 17-beta estradiol during the neonatal period; yet again, we saw no difference in FAA between control and masculinized females. Finally, we observed that there was no longer a sex difference in FAA for older mice, suggesting that the sex difference in FAA is age-dependent. Thus, our study demonstrates that singular manipulations of gonadal hormones, sex chromosomes, or developmental patterning are not able to explain the difference in FAA between young male and female mice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anticipation, Psychological / drug effects
  • Anticipation, Psychological / physiology*
  • Circadian Rhythm / drug effects*
  • Circadian Rhythm / genetics*
  • Estradiol / pharmacology
  • Female
  • Food*
  • Gene Dosage
  • Gonadal Steroid Hormones / pharmacology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Sex Characteristics*
  • Sex Chromosomes / genetics*

Substances

  • Gonadal Steroid Hormones
  • Estradiol

Grants and funding

The authors received no specific funding for this work but did receive the following awards, which were used, in part, to fund this study: the California State Polytechnic University of Pomona to AS, CSU Program for Education and Research in Biotechnology (New Investigator Award) to AS, Kellogg Undergraduate Scholars Program to CM and JA, Science Educational Enhancement Services to AA, CSU-Louis Stokes Alliance for Minority Participation to AA, and the Hearst and California Wellness Foundation to AA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.