Object: To present and evaluate a fast phosphorus magnetic resonance spectroscopic imaging (MRSI) sequence using echo planar spectroscopic imaging with flyback readout gradient trajectories.
Materials and methods: Waveforms were designed and implemented using a 3 Tesla MRI system. 31P spectra were acquired with 2 × 2 cm2 and 3 × 3 cm2 resolution over a 20- and 21-cm field of view and spectral bandwidths up to 1923 Hz. The sequence was first tested using a 20-cm-diameter phosphate phantom, and subsequent in vivo tests were performed on healthy human calf muscles and brains from five volunteers.
Results: Flyback EPSI achieved 10× and 7× reductions in acquisition time, with 68.0 ± 1.2 and 69.8 ± 2.2% signal-to-noise ratio (SNR) per unit of time efficiency (theoretical SNR efficiency was 74.5 and 76.4%) for the in vivo experiments, compared to conventional phase-encoded MRSI for the 2 × 2 cm2 and 3 × 3 cm2 resolution waveforms, respectively. Statistical analysis showed no difference in the quantification of most metabolites. Time savings and SNR comparisons were consistent across phantom, leg and brain experiments.
Conclusion: EPSI using flyback readout trajectories was found to be a reliable alternative for acquiring 31P-MRSI data in a shorter acquisition time.
Keywords: 31P MR spectroscopy; EPSI; Echo planar imaging; MRSI.