Deep brain stimulation outcomes in patients implanted under general anesthesia with frame-based stereotaxy and intraoperative MRI

J Neurosurg. 2018 Dec 1;129(6):1572-1578. doi: 10.3171/2017.7.JNS171166. Epub 2018 Jan 26.

Abstract

OBJECTIVEThe authors' aim in this study was to evaluate placement accuracy and clinical outcomes in patients who underwent implantation of deep brain stimulation devices with the aid of frame-based stereotaxy and intraoperative MRI after induction of general anesthesia.METHODSThirty-three patients with movement disorders (27 with Parkinson's disease) underwent implantation of unilateral or bilateral deep brain stimulation systems (64 leads total). All patients underwent the implantation procedure with standard frame-based techniques under general anesthesia and without microelectrode recording. MR images were acquired immediately after the procedure and fused to the preoperative plan to verify accuracy. To evaluate clinical outcome, different scales were used to assess quality of life (EQ-5D), activities of daily living (Unified Parkinson's Disease Rating Scale [UPDRS] part II), and motor function (UPDRS part III during off- and on-medication and off- and on-stimulation states). Accuracy was assessed by comparing the coordinates (x, y, and z) from the preoperative plan and coordinates from the tip of the lead on intraoperative MRI and postoperative CT scans.RESULTSThe EQ-5D score improved or remained stable in 71% of the patients. When in the off-medication/on-stimulation state, all patients reported significant improvement in UPDRS III score at the last follow-up (p < 0.001), with a reduction of 25.2 points (46.3%) (SD 14.7 points and 23.5%, respectively). There was improvement or stability in the UPDRS II scores for 68% of the Parkinson's patients. For 2 patients, the stereotactic error was deemed significant based on intraoperative MRI findings. In these patients, the lead was removed and replaced after correcting for the error during the same procedure. Postoperative lead revision was not necessary in any of the patients. Based on findings from the last intraoperative MRI study, the mean difference between the tip of the electrode and the planned target was 0.82 mm (SD 0.5 mm, p = 0.006) for the x-axis, 0.67 mm (SD 0.5 mm, p < 0.001) for the y-axis, and 0.78 mm (SD 0.7 mm, p = 0.008) for the z-axis. On average, the euclidian distance was 1.52 mm (SD 0.6 mm). In patients who underwent bilateral implantation, accuracy was further evaluated comparing the first implanted side and the second implanted side. There was a significant mediolateral (x-axis) difference (p = 0.02) in lead accuracy between the first (mean 1.02 mm, SD 0.57 mm) and the second (mean 0.66 mm, SD 0.50 mm) sides. However, no significant difference was found for the y- and z-axes (p = 0.10 and p = 0.89, respectively).CONCLUSIONSFrame-based DBS implantation under general anesthesia with intraoperative MRI verification of lead location is safe, accurate, precise, and effective compared with standard implantation performed using awake intraoperative physiology. More clinical trials are necessary to directly compare outcomes of each technique.

Keywords: DBS = deep brain stimulation; GPi = globus pallidus pars interna; IPG = implantable pulse generator; Parkinson’s disease; STN = subthalamic nucleus; UPDRS = Unified Parkinson’s Disease Rating Scale; deep brain stimulation; dystonia; functional neurosurgery; interventional MRI; stereotactic technique.

MeSH terms

  • Activities of Daily Living*
  • Aged
  • Anesthesia, General
  • Deep Brain Stimulation*
  • Electrodes, Implanted*
  • Female
  • Humans
  • Imaging, Three-Dimensional
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Parkinson Disease / diagnostic imaging
  • Parkinson Disease / surgery
  • Parkinson Disease / therapy*
  • Quality of Life*
  • Subthalamic Nucleus / diagnostic imaging
  • Subthalamic Nucleus / surgery*