Background: Despite advances in the Fontan procedure, there is an unmet clinical need for patient-specific graft designs that are optimized for variations in patient anatomy. The objective of this study is to design and produce patient-specific Fontan geometries, with the goal of improving hepatic flow distribution (HFD) and reducing power loss (Ploss), and manufacturing these designs by electrospinning.
Methods: Cardiac magnetic resonance imaging data from patients who previously underwent a Fontan procedure (n = 2) was used to create 3-dimensional models of their native Fontan geometry using standard image segmentation and geometry reconstruction software. For each patient, alternative designs were explored in silico, including tube-shaped and bifurcated conduits, and their performance in terms of Ploss and HFD probed by computational fluid dynamic (CFD) simulations. The best-performing options were then fabricated using electrospinning.
Results: CFD simulations showed that the bifurcated conduit improved HFD between the left and right pulmonary arteries, whereas both types of conduits reduced Ploss. In vitro testing with a flow-loop chamber supported the CFD results. The proposed designs were then successfully electrospun into tissue-engineered vascular grafts.
Conclusions: Our unique virtual cardiac surgery approach has the potential to improve the quality of surgery by manufacturing patient-specific designs before surgery, that are also optimized with balanced HFD and minimal Ploss, based on refinement of commercially available options for image segmentation, computer-aided design, and flow simulations.
Keywords: 3D printing; flow dynamics; patient specific model; virtual surgical planning.
Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.