The emergence and global spread of metallo-β-lactamase (MBL) mediated resistance to almost all β-lactam antibacterials poses a serious threat to public health. Since no clinically useful MBL inhibitors have been reported, there is an urgent need to develop new potent broad-spectrum MBL inhibitors effective against antibacterial resistance. Herein, we synthesized a set of 2-substituted ((S)-3-mercapto-2-methylpropanamido) acetic acid derivatives, some of which displayed potent inhibition with high ligand efficiency to the clinically relevant MBL subtypes, Verona Integron-encoded MBL (VIM)-2 and New Delhi MBL (NDM)-1. Kinetic studies revealed that the inhibitors are not strong zinc chelators in solution, and they bind reversibly to VIM-2 but dissociate very slowly. Crystallographic analyses revealed that they inhibit VIM-2 via chelating the active site zinc ions and interacting with catalytically important residues. Further cell- and zebrafish-based assays revealed that the inhibitors slightly increase susceptibility of E. coli cells expressing VIM-2 to meropenem, and they have no apparent toxicity to the viability of HEK293T cells and the zebrafish embryogenesis.
Keywords: Antibacterial resistance; Crystallography; Inhibitor design; Metallo-β-lactamase (MBL); VIM-2.
Copyright © 2018 Elsevier Masson SAS. All rights reserved.