We demonstrate a new method for the detection of the spin-chemical potential in topological insulators using spin-polarized four-probe scanning tunneling microscopy on in situ cleaved Bi_{2}Te_{2}Se surfaces. Two-dimensional (2D) surface and 3D bulk conductions are separated quantitatively via variable probe-spacing measurements, enabling the isolation of the nonvanishing spin-dependent electrochemical potential from the Ohmic contribution. This component is identified as the spin-chemical potential arising from the 2D charge current through the spin momentum locked topological surface states (TSS). This method provides a direct measurement of spin current generation efficiency and opens a new avenue to access the intrinsic spin transport associated with pristine TSS.