Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1117-1122. doi: 10.1073/pnas.1710323115. Epub 2018 Jan 16.

Abstract

All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM.

Keywords: cortical layers; frontal cortex; oscillations; working memory.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Brain Mapping / methods
  • Cognition*
  • Electrodes
  • Frontal Lobe / physiology*
  • Macaca mulatta
  • Memory, Short-Term*
  • Neurons / physiology
  • Oscillometry
  • Prefrontal Cortex / physiology*
  • Visual Cortex / physiology