The carnivorous plant Dionaea possesses very sensitive mechanoreceptors. Upon contact with prey an action potential is triggered which, via an electrical network - comparable to the nervous system of vertebrates - rapidly closes its bivalved trap. The 'hunting cycle' comprises a constitutively activated mechanism for the rapid capture of prey, followed by a well-orchestrated sequence of activation of genes responsible for tight trap closure, digestion of the prey, and uptake of nutrients. Decisions on the step-by-step activation are based on 'counting' the number of stimulations of sensory organs. These remarkable animal-like skills in the carnivore are achieved not by taking over genes from its prey but by modifying and rearranging the functions of genes that are ubiquitous in plants.
Copyright © 2017 Elsevier Ltd. All rights reserved.