A large proportion of users do not achieve adequate control using current non-invasive brain-computer interfaces (BCIs). This issue has being coined "BCI-Illiteracy" and is observed among different BCI modalities. Here, we compare the performance and the BCI-illiteracy rate of a tactile selective sensation (SS) and motor imagery (MI) BCI, for a large subject samples. We analyzed 80 experimental sessions from 57 subjects with two-class SS protocols. For SS, the group average performance was 79.8 ± 10.6%, with 43 out of the 57 subjects (75.4%) exceeding the 70% BCI-illiteracy threshold for left- and right-hand SS discrimination. When compared with previous results, this tactile BCI outperformed all other tactile BCIs currently available. We also analyzed 63 experimental sessions from 43 subjects with two-class MI BCI protocols, where the group average performance was 77.2 ± 13.3%, with 69.7% of the subjects exceeding the 70% performance threshold for left- and right-hand MI. For within-subject comparison, the 24 subjects who participated to both the SS and MI experiments, the BCI performance was superior with SS than MI especially in beta frequency band (p < 0.05), with enhanced R2 discriminative information in the somatosensory cortex for the SS modality. Both SS and MI showed a functional dissociation between lower alpha ([8 10] Hz) and upper alpha ([10 13] Hz) bands, with BCI performance significantly better in the upper alpha than the lower alpha (p < 0.05) band. In summary, we demonstrated that SS is a promising BCI modality with low BCI illiteracy issue and has great potential in practical applications reaching large population.