The mitochondrial ATP synthase is a shared drug target for aging and dementia

Aging Cell. 2018 Apr;17(2):e12715. doi: 10.1111/acel.12715. Epub 2018 Jan 7.

Abstract

Aging is a major driving force underlying dementia, such as that caused by Alzheimer's disease (AD). While the idea of targeting aging as a therapeutic strategy is not new, it remains unclear how closely aging and age-associated diseases are coupled at the molecular level. Here, we discover a novel molecular link between aging and dementia through the identification of the molecular target for the AD drug candidate J147. J147 was developed using a series of phenotypic screening assays mimicking disease toxicities associated with the aging brain. We have previously demonstrated the therapeutic efficacy of J147 in several mouse models of AD. Here, we identify the mitochondrial α-F1 -ATP synthase (ATP5A) as a target for J147. By targeting ATP synthase, J147 causes an increase in intracellular calcium leading to sustained calcium/calmodulin-dependent protein kinase kinase β (CAMKK2)-dependent activation of the AMPK/mTOR pathway, a canonical longevity mechanism. Accordingly, modulation of mitochondrial processes by J147 prevents age-associated drift of the hippocampal transcriptome and plasma metabolome in mice and extends lifespan in drosophila. Our results link aging and age-associated dementia through ATP synthase, a molecular drug target that can potentially be exploited for the suppression of both. These findings demonstrate that novel screens for new AD drug candidates identify compounds that act on established aging pathways, suggesting an unexpectedly close molecular relationship between the two.

Keywords: ATP synthase; Alzheimer's disease; aging; dementia; metabolism; mitochondria; neurodegeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / genetics*
  • Dementia / genetics*
  • Humans
  • Mitochondria / enzymology*
  • Mitochondria / metabolism
  • Mitochondrial Proton-Translocating ATPases / genetics*

Substances

  • Mitochondrial Proton-Translocating ATPases