Background: The role of single nucleotide polymorphisms (SNPs) in TP53 in the pathogenesis of glioma is still debated. The aim of our study was to investigate the role of several TP53 SNPs in the risk of glioma and their possible role as prognostic biomarkers of overall and progression-free survival.
Methods: We examined 12 SNPs in TP53 from peripheral blood and neoplastic tissue of patients with a diagnosis of glioma who underwent surgery from 2012 to 2015. Direct genomic sequencing of TP53 was performed to detect the presence of polymorphisms. We compared data with a matched cancer-free control group and the NCBI SNPs database. Overall and progression-free survival were analyzed in patients with glioblastoma subjected to gross total resection and concomitant radio-chemotherapy.
Results: No association was observed with glioma susceptibility and overall survival. Two new SNPs were detected: c.97-46 G>A (intron 3) and c.783-31 A>G (intron 7). The number of SNPs observed was higher (21.4%) in blood than in tumoral samples. We observed a significant reduction in progression-free survival in patients with at least one exonic SNP.
Conclusions: We can hypothesize an involvement of TP53 SNPs in response mechanisms to adjuvant treatment that may affect progression-free survival. Moreover, our blood-tissue combined study revealed a significant difference in SNPs between blood and tumoral samples, probably due to glioma heterogeneity and genomic instability.