Resveratrol (RSV) is a naturally occurring polyphenolic phytoalexin possessing numerous health-promoting effects. Chromosomal instability (CIN), usually results from defective spindle assembly checkpoint (SAC), is a major contributor to many diseases. While it's recently recognized that RSV exhibits a nonlinear dose response for disease prevention, whether it's the case for its role in CIN remains unknown. Here, we investigated the potential of a broad range of RSV concentrations (0.01-100μM) on CIN and the underlying mechanisms in human normal colon epithelial NCM460 cells. CIN was measured by cytokinesis-block micronucleus assay; mitotic fidelity was determined by aberrant mitosis analysis; SAC activity was assessed by nocodazole-challenge assay, and the expression of SAC genes was examined by RT-qPCR. We found that 0.1μM RSV significantly reduced CIN (P<0.01), while 100μM RSV significantly induced it (P<0.05). Mitotic infidelity was significantly prevented by 0.1μM RSV but promoted by 100μM RSV (P<0.05 for both). Moreover, the function of SAC was sustained and impaired by 0.1μM and 100μM RSV, respectively. Several SAC genes, including Aurora-B, Aurora-C, Plk-1 and CENP-E, were significantly up-regulated and down-regulated by 0.1μM and 100μM RSV, respectively (P<0.05). In conclusion, RSV exhibited a biphasic dose-dependent effect on CIN that was exerted via the regulation of mitotic fidelity through the SAC network. The health implications of these findings were summarized.
Keywords: Chromosomal instability; Hormesis; Human colon cells; Mitotic aberrations; Resveratrol; Spindle assembly checkpoint.
Copyright © 2017 Elsevier B.V. All rights reserved.