The identification of somatic mutations is crucial for guiding therapeutic decisions about personalized melanoma treatment. However, genetic analysis of tumors is usually performed on limited and often low-quality DNA from tumors with low tumor cellularity and high tumor heterogeneity. Different mutation-detection platforms exist, with varying analytical sensitivities. Here we evaluated the detection of common mutations in BRAF, NRAS, and TERT promoter in 40 melanoma FFPE tissues using Droplet Digital (dd)PCR, and compared the results to the detection rates obtained by Sanger sequencing and pyrosequencing. The cellularity of tumors analyzed ranged from 5% to 50% (n = 28) and 50% to 90% (n = 12). Overall, droplet digital (dd)PCR was more sensitive, detecting mutations in 12.5% and 23% of tumors deemed as wild-type by pyrosequencing and Sanger sequencing, respectively. The increased sensitivity of ddPCR was more apparent among tumors with <50% tumor cellularity. Implementation of ddPCR-based assays may facilitate analysis of early-stage tumors and support research into improving outcomes in melanoma patients.
Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.