Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus

Arterioscler Thromb Vasc Biol. 2018 Mar;38(3):529-541. doi: 10.1161/ATVBAHA.117.309819. Epub 2018 Jan 4.

Abstract

Objective: Copper transporter ATP7A (copper-transporting/ATPase) is required for full activation of SOD3 (extracellular superoxide dismutase), which is secreted from vascular smooth muscle cells (VSMCs) and anchors to endothelial cell surface to preserve endothelial function by scavenging extracellular superoxide. We reported that ATP7A protein expression and SOD3 activity are decreased in insulin-deficient type 1 diabetes mellitus vessels, thereby, inducing superoxide-mediated endothelial dysfunction, which are rescued by insulin treatment. However, it is unknown regarding the mechanism by which insulin increases ATP7A expression in VSMCs and whether ATP7A downregulation is observed in T2DM (type2 diabetes mellitus) mice and human in which insulin-Akt (protein kinase B) pathway is selectively impaired.

Approach and results: Here we show that ATP7A protein is markedly downregulated in vessels isolated from T2DM patients, as well as those from high-fat diet-induced or db/db T2DM mice. Akt2 (protein kinase B beta) activated by insulin promotes ATP7A stabilization via preventing ubiquitination/degradation as well as translocation to plasma membrane in VSMCs, which contributes to activation of SOD3 that protects against T2DM-induced endothelial dysfunction. Downregulation of ATP7A in T2DM vessels is restored by constitutive active Akt or PTP1B-/- (protein-tyrosine phosphatase 1B-deficient) T2DM mice, which enhance insulin-Akt signaling. Immunoprecipitation, in vitro kinase assay, and mass spectrometry analysis reveal that insulin stimulates Akt2 binding to ATP7A to induce phosphorylation at Ser1424/1463/1466. Furthermore, SOD3 activity is reduced in Akt2-/- vessels or VSMCs, which is rescued by ATP7A overexpression.

Conclusion: Akt2 plays a critical role in ATP7A protein stabilization and translocation to plasma membrane in VSMCs, which contributes to full activation of vascular SOD3 that protects against endothelial dysfunction in T2DM.

Keywords: Akt2 protein; copper-transporting ATPase; endothelial dysfunction; type 2 diabetes mellitus; vascular smooth muscle.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Aorta, Thoracic / enzymology
  • Aorta, Thoracic / physiopathology
  • Cells, Cultured
  • Copper-Transporting ATPases / genetics
  • Copper-Transporting ATPases / metabolism*
  • Diabetes Mellitus, Experimental / drug therapy
  • Diabetes Mellitus, Experimental / enzymology*
  • Diabetes Mellitus, Experimental / genetics
  • Diabetes Mellitus, Experimental / physiopathology
  • Diabetes Mellitus, Type 2 / drug therapy
  • Diabetes Mellitus, Type 2 / enzymology*
  • Diabetes Mellitus, Type 2 / genetics
  • Diabetes Mellitus, Type 2 / physiopathology
  • Diabetic Angiopathies / enzymology*
  • Diabetic Angiopathies / genetics
  • Diabetic Angiopathies / physiopathology
  • Diabetic Angiopathies / prevention & control
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / enzymology*
  • Endothelium, Vascular / physiopathology
  • Enzyme Stability
  • Female
  • Humans
  • Hypoglycemic Agents / pharmacology
  • Insulin / pharmacology
  • Male
  • Mesenteric Arteries / enzymology
  • Mesenteric Arteries / physiopathology
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Muscle, Smooth, Vascular / drug effects
  • Muscle, Smooth, Vascular / enzymology*
  • Muscle, Smooth, Vascular / physiopathology
  • Phosphorylation
  • Protein Transport
  • Proto-Oncogene Proteins c-akt / deficiency
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Rats, Sprague-Dawley
  • Signal Transduction
  • Superoxide Dismutase / deficiency
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism*
  • Vasodilation

Substances

  • Atp7a protein, mouse
  • Hypoglycemic Agents
  • Insulin
  • Sod3 protein, mouse
  • Superoxide Dismutase
  • Akt1 protein, mouse
  • Akt2 protein, mouse
  • Proto-Oncogene Proteins c-akt
  • Copper-Transporting ATPases