Worldwide, more than one million people die on the roads each year. A third of these fatal accidents are attributed to speeding, with properties of the individual driver and the environment regarded as key contributing factors. We examine real-world speeding behavior and its interaction with illuminance, an environmental property defined as the luminous flux incident on a surface. Drawing on an analysis of 1.2 million vehicle movements, we show that reduced illuminance levels are associated with increased speeding. This relationship persists when we control for factors known to influence speeding (e.g., fluctuations in traffic volume) and consider proxies of illuminance (e.g., sight distance). Our findings add to a long-standing debate about how the quality of visual conditions affects drivers' speed perception and driving speed. Policy makers can intervene by educating drivers about the inverse illuminance‒speeding relationship and by testing how improved vehicle headlights and smart road lighting can attenuate speeding.