Pharmacological activation of TRPV4 produces immediate cell damage and induction of apoptosis in human melanoma cells and HaCaT keratinocytes

PLoS One. 2018 Jan 2;13(1):e0190307. doi: 10.1371/journal.pone.0190307. eCollection 2018.

Abstract

Background: TRPV4 channels are calcium-permeable cation channels that are activated by several physicochemical stimuli. Accordingly, TRPV4 channels have been implicated in the regulation of osmosensing, mechanotransduction, thermosensation, and epithelial/endothelial barrier functions. Whether TRPV4 is also mechanistically implicated in melanoma cell proliferation is not clear. Here, we hypothesized that TRPV4 is expressed in human melanoma and that pharmacological activation interferes with cell proliferation.

Methodology/principal findings: TRPV4 functions were studied in melanoma cell lines (A375, SK-MEL-28, MKTBR), immortalized non-cancer keratinocytes (HaCaT), and murine 3T3 fibroblasts by patch-clamp, qRT-PCR, intracellular calcium measurements, cell proliferation, and flow cytometric assays of apoptosis and cell cycle. The selective TRPV4-activator, GSK1016790A, elicited non-selective cation currents with TRPV4-typical current-voltage-relationship in all cell lines. GSK1016790A-induced currents were blocked by the TRPV4-blocker, HC067047. TRPV4 mRNA expression was demonstrated by qRT-PCR. In A375 cells, TRPV4 activation was frequently paralleled by co-activation of calcium/calmodulin-regulated KCa3.1 channels. Light microscopy showed that TRPV4-activation produced rapid cellular disarrangement, nuclear densification, and detachment of a large fraction of all melanoma cell lines and HaCaT cells. TRPV4-activation induced apoptosis and drastically inhibited A375 and HaCaT proliferation that could be partially prevented by HC067047.

Conclusions/significance: Our study showed that TRPV4 channels were functionally expressed in human melanoma cell lines and in human keratinocytes. Pharmacological TRPV4 activation in human melanoma cells and keratinocytes caused severe cellular disarrangement, necrosis and apoptosis. Pharmacological targeting of TRPV4 could be an alternative or adjuvant therapeutic strategy to treat melanoma progression and other proliferative skin disorders.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Apoptosis / drug effects*
  • Calcium / metabolism
  • Cell Cycle
  • Cell Line
  • Cell Line, Tumor
  • Flow Cytometry
  • Humans
  • Keratinocytes / metabolism
  • Keratinocytes / pathology*
  • Leucine / analogs & derivatives
  • Leucine / pharmacology
  • Melanoma / metabolism
  • Melanoma / pathology*
  • Mice
  • Patch-Clamp Techniques
  • Sulfonamides / pharmacology
  • TRPV Cation Channels / agonists*

Substances

  • N-(1-((4-(2-(((2,4-dichlorophenyl)sulfonyl)amino)-3-hydroxypropanoyl)-1-piperazinyl)carbonyl)-3-methylbutyl)-1-benzothiophene-2-carboxamide
  • Sulfonamides
  • TRPV Cation Channels
  • TRPV4 protein, human
  • Leucine
  • Calcium

Grants and funding

We wish to thank Andrea Lorda for excellent technical assistance and the Service of Cytometry and Cell Sorting of the Aragon Health Sciences Institute (IACS). This work was supported by the European Community [FP7-PEOPLE MC CIG ·”BrainIK”, to RK]; Department of Industry & Innovation, Government of Aragon [GIPASC-B105 to ALGO]; by projects TIN2013-41998-R and DPI2016-75458-R from Spanish Ministry of Economy and Competitiveness (MINECO), to EP; MULTITOOLS2HEART from CIBER-BBN through Instituto de Salud Carlos III, Spain, European Social Fund (EU) and Aragón Government through BSICoS group (T96) to EP; by the European Research Council (ERC), project ERC-2014-StG 638284 to EP; by the project PI16/02112 from the Instituto de Salud Carlos III to ALGO, and by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III [CB06/07/1036] to RK. KLH received sabbatical support from the University of Otago.