Automatic CDR Estimation for Early Glaucoma Diagnosis

J Healthc Eng. 2017:2017:5953621. doi: 10.1155/2017/5953621. Epub 2017 Nov 27.

Abstract

Glaucoma is a degenerative disease that constitutes the second cause of blindness in developed countries. Although it cannot be cured, its progression can be prevented through early diagnosis. In this paper, we propose a new algorithm for automatic glaucoma diagnosis based on retinal colour images. We focus on capturing the inherent colour changes of optic disc (OD) and cup borders by computing several colour derivatives in CIE Lab colour space with CIE94 colour distance. In addition, we consider spatial information retaining these colour derivatives and the original CIE Lab values of the pixel and adding other characteristics such as its distance to the OD centre. The proposed strategy is robust due to a simple structure that does not need neither initial segmentation nor removal of the vascular tree or detection of vessel bends. The method has been extensively validated with two datasets (one public and one private), each one comprising 60 images of high variability of appearances. Achieved class-wise-averaged accuracy of 95.02% and 81.19% demonstrates that this automated approach could support physicians in the diagnosis of glaucoma in its early stage, and therefore, it could be seen as an opportunity for developing low-cost solutions for mass screening programs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Color*
  • Diagnosis, Computer-Assisted*
  • Glaucoma / diagnosis*
  • Humans
  • Retina / physiopathology*