Hydrogen sulfide is produced from l-cysteine by the action of both cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) and increasingly has been found to play a profound regulatory role in a range of physiological processes. Mounting evidence suggests that upregulation of hydrogen sulfide biosynthesis occurs in several disease states, including rheumatoid arthritis, hypertension, ischemic injury, and sleep-disordered breathing. In addition to being critical tools in our understanding of hydrogen sulfide biology, inhibitors of CSE hold therapeutic potential for the treatment of diseases in which increased levels of this gasotransmitter play a role. We describe the discovery and development of a novel series of potent CSE inhibitors that show increased activity over the benchmark inhibitor and, importantly, display high selectivity for CSE versus CBS.