Surface properties are generally determined by the top most surface layer also defining how molecules adsorb onto it. By exploring effects due to interactions with deeper subsurface layers, however, long-range interaction forces were found to also significantly contribute to molecular adsorption, in which hydration of the subsurface region is the key factor. Water molecules confined to a subsurface amphiphilic gradient are confirmed to cause these long-range dipolar interactions by preferential orientation, thus significantly changing the way how a protein interacts with the surface. These findings imply future exploitation of an additional factor to modulate adsorption processes.