In immunocompromised individuals, especially in patients with T cell immunodeficiency, reactivation of JCPyV can cause serious life-threatening diseases. Nowadays, HIV infection is one of the most important factor for reactivation of JCPyV and the development of of the progressive multifocal leukoencephalopathy (PML). Mutations in the outer loops of the VP1 region can lead to the selection of the viral variants with changed tropism and increased pathological potential. The aims of this study were to determine sequence variation and amino acid changes within VP1 loops and the structure of non-coding control region (NCCR) of urinary excreted JCPyV isolates among HIV-infected patients and healthy donors. Single urine samples from 114 HIV-infected patients and 120 healthy donors were collected. PCR was performed for amplification of VP1 and NCCR. Amplified fragments were directly sequenced and analyzed by using bioinformatics tools. Nucleotide substitutions were detected within DE and EF loops and in the β-sheets of both studied groups. In HIV-infected patients group, 70% of mutations were detected within receptor domains. Among healthy donors, one mutation was identified within β-sheets while the remaining were located within receptor domains. The most prevalent mutation was L157V in both groups. Analysis of NCCR revealed that all isolates had archetype structure with some minor changes. Since single point mutations at specific place within outer loop of VP1 region can cause formation of variants with changed receptor specificity, identification of these mutations in HIV-infected patients can help to single out those with higher risk for development of polyomavirus-associated diseases.
Keywords: HIV; JC polyomavirus; Mutations; Regulatory region; VP1.