The induction of bone morphogenetic protein (BMP)2 in injured and arthritis articular cartilage has been proposed, but the precise mechanism has not been clearly clarified. Our previous study has found that leptin could stimulate the BMP2 autocrine effect to increase the anabolic collagen II expression when it initiates the catabolic response in human chondrocytes. It has been suggested that this BMP2 autocrine effect contributes to a reparative role in leptin-stimulated human chondrocytes. In this study, we further determined whether this BMP2 autocrine effect also affect the expressions of catabolic matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS). Human primary and SW1353 chondrocytes were used in this study. It was shown that leptin could induce the expressions of MMP1, 3, and 13 and ADAMTS4 and 5 in both human primary and SW1353 chondrocytes. Leptin-increased MMP1/13 (not MMP3) and ADAMTS4 (not ADAMTS5) expressions were affected by the leptin-upregulated BMP2 and its specific downstream Smad1/5 signaling. Moreover, both HDAC3 and 4 are involved in regulating leptin-induced BMP2 upregulation and then affect MMP1 and 13 and ADAMTS4 expression. Both HDAC3 and 4 also affect leptin-increased MMP3 mRNA expression but not through BMP2 autocrine effect of leptin induction. Our results further elucidated the role of BMP2 autocrine effect in matrix-degrading enzymes expressions under leptin stimulation. The findings in this study provide new insights into the possible mechanism of BMP2 induction in leptin-stimulated chondrocytes and in leptin-induced OA development.
Keywords: ADAMTS; BMP2; MMP; chondrocytes; leptin.
© 2017 Wiley Periodicals, Inc.