Progressive renal fibrosis in chronic kidney disease (CKD) greatly contributes to end-stage renal failure and is associated with high mortality. The identification of renal fibrosis biomarkers for the diagnosis and the monitoring of disease progression in CKD is urgently needed. Whole-transcriptomic analysis of renal tissues in a unilateral ureteral obstruction (UUO) mouse model revealed that the mRNA level of Bcl-3, an atypical member of the IκB family, was induced 6.3-fold 2 days after UUO. Compared with renal tissues in sham-operated mice, increases in Bcl-3 mRNA and protein in the renal tissues in the UUO model were accompanied with increases in other markers of renal fibrosis, including human epididymis protein 4 (HE4), a recently identified biomarker of renal fibrosis. Immunohistochemical analysis revealed that both Bcl-3 and HE4 were located in the plasma of renal tubule cells. Serum protein levels of Bcl-3 and HE4 rose with the development of renal fibrosis in UUO mouse model. We found that the serum protein levels of both HE4 and Bcl-3 were elevated in CKD patients compared with healthy controls. Moreover, a significant positive correlation between Bcl-3 and HE4 (r = 0.939, p < 0.0001) was observed in CKD patients. These data suggest that Bcl-3 can serve as a novel valuable biomarker of renal fibrosis in CKD.
Keywords: Bcl-3; biomarker; chronic kidney disease; renal fibrosis; unilateral ureteral obstruction.