Although antiviral drugs are available for the treatment of influenza infection, it is an urgent requirement to develop new antiviral drugs regarding the emergence of drug-resistant viruses. The nucleoprotein (NP) is conserved among all influenza A viruses (IAVs) and has no cellular equivalent. Therefore, NP is an ideal target for the development of new IAV inhibitors. In this study, we identified a novel anti-influenza compound, ZBMD-1, from a library of 20,000 compounds using cell-based influenza A infection assays. We found that ZBMD-1 inhibited the replication of H1N1 and H3N2 influenza A virus strains in vitro, with an IC50 ranging from 0.41-1.14 μM. Furthermore, ZBMD-1 inhibited the polymerase activity and specifically impaired the nuclear export of NP. Further investigation indicated that ZBMD-1 binds to the nuclear export signal 3 (NES3) domain and the dimer interface of the NP pocket. ZBMD-1 also protected mice that were challenged with lethal doses of A/PR/8/1934 (H1N1) virus, effectively relieving lung histopathology changes, as well as strongly inhibiting the expression of pro-inflammatory cytokines/chemokines, without inducing toxicity effects in mice. These results suggest that ZBMD-1 is a promising anti-influenza compound which can be further investigated as a useful strategy against IAVs in the future.
Keywords: compound ZBMD-1; influenza A virus; nuclear export; nucleoprotein.
© 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.