Trimedazidine alleviates pulmonary artery banding-induced acute right heart dysfunction and activates PRAS40 in rats

Oncotarget. 2017 Sep 8;8(54):92064-92078. doi: 10.18632/oncotarget.20752. eCollection 2017 Nov 3.

Abstract

The molecular mechanism underlying acute right heart failure (RHF) is poorly understood. We used pulmonary artery banding (PAB) to induce acute RHF characterized by a rapid rise of right ventricular pressure, and then a decrease in right ventricular pressure along with a decrease in blood pressure right after banding. We found higher brain natriuretic peptide (BNP) and beta-myosin heavy chain (βMHC) levels and lower alpha-myosin heavy chain (αMHC) levels in RHF rats than sham-operated rats. Hemodynamic indexes in rats with acute RHF were slightly improved by trimedazidine TMZ, a key inhibitor of fatty acid (FA) oxidation. TMZ also reversed downregulation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1β) and peroxisome proliferator-activated receptor alpha (PPARα) by PAB and up-regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor delta (PPARδ) and pyruvate dehydrogenase kinase isoform 4 (PDK4). In addition, TMZ reversed upregulation of phosphorylated Akt by PAB and increased phosphorylated proline-rich Akt-substrate 40 (PRAS40). Autophagy and apoptosis were not modified by PAB or TMZ. An acute RHF model was established in rats through 70% constriction of the pulmonary artery. TMZ treatment alleviated PAB-induced acute RHF by activating PRAS40 and upregulatingPGC-1α, PGC-1β, PPARα, PPARδ, and PDK4.

Keywords: PRAS40; acute right dysfunction; pulmonary artery banding; trimedazidine.