Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury

J Surg Res. 2017 Dec:220:363-371. doi: 10.1016/j.jss.2017.07.022. Epub 2017 Sep 1.

Abstract

Background: It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury.

Materials and methods: Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression.

Results: Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation.

Conclusions: HHOS has protective effects against liver injury in a rat model of HSR.

Keywords: Hemorrhagic; Hydrogen; Liver; Oxygen; Reperfusion injury; Shock.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytokines / metabolism
  • Disease Models, Animal
  • Hepatic Insufficiency / etiology
  • Hepatic Insufficiency / pathology
  • Hepatic Insufficiency / prevention & control*
  • Hydrogen / therapeutic use
  • Liver / metabolism
  • Liver / ultrastructure
  • Male
  • Oxygen / therapeutic use
  • Random Allocation
  • Rats, Sprague-Dawley
  • Resuscitation / adverse effects*
  • Shock, Hemorrhagic / complications*
  • Solutions / therapeutic use*

Substances

  • Cytokines
  • Solutions
  • Hydrogen
  • Oxygen