We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large and diffuse basis sets that are otherwise questionable-due to electron spill-out effects-in standard embedding models. Based on our analysis, we find the PDE model to be robust and much more systematic than less sophisticated focused embedding models, and thus outline the PDE model as a very efficient and accurate approach to describe the electronic structure of ground and excited states as well as molecular properties of complex, heterogeneous systems.