A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery

Adv Mater. 2018 Jan;30(2). doi: 10.1002/adma.201704436. Epub 2017 Nov 27.

Abstract

Solid-state batteries (SSBs) are promising for safer energy storage, but their active loading and energy density have been limited by large interfacial impedance caused by the poor Li+ transport kinetics between the solid-state electrolyte and the electrode materials. To address the interfacial issue and achieve higher energy density, herein, a novel solid-like electrolyte (SLE) based on ionic-liquid-impregnated metal-organic framework nanocrystals (Li-IL@MOF) is reported, which demonstrates excellent electrochemical properties, including a high room-temperature ionic conductivity of 3.0 × 10-4 S cm-1 , an improved Li+ transference number of 0.36, and good compatibilities against both Li metal and active electrodes with low interfacial resistances. The Li-IL@MOF SLE is further integrated into a rechargeable Li|LiFePO4 SSB with an unprecedented active loading of 25 mg cm-2 , and the battery exhibits remarkable performance over a wide temperature range from -20 up to 150 °C. Besides the intrinsically high ionic conductivity of Li-IL@MOF, the unique interfacial contact between the SLE and the active electrodes owing to an interfacial wettability effect of the nanoconfined Li-IL guests, which creates an effective 3D Li+ conductive network throughout the whole battery, is considered to be the key factor for the excellent performance of the SSB.

Keywords: ionic liquids; lithium batteries; metal-organic frameworks; nanowetted interfaces; solid-like electrolytes.