Breaking the scale: how disrupting the karyoplasmic ratio gives cancer cells an advantage for metastatic invasion

Biochem Soc Trans. 2017 Dec 15;45(6):1333-1344. doi: 10.1042/BST20170153. Epub 2017 Nov 17.

Abstract

Nuclear size normally scales with the size of the cell, but in cancer this 'karyoplasmic ratio' is disrupted. This is particularly so in more metastatic tumors where changes in the karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. However, the direction of nuclear size changes differs for particular tumor types: for example in breast cancer, larger nuclear size correlates with increased metastasis, while for lung cancer smaller nuclear size correlates with increased metastasis. Thus, there must be tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear size regulation are widely expressed. Notably, for these tumor types, ploidy changes have been excluded as the basis for nuclear size changes, and so, the increased metastasis is more likely to have a basis in the nuclear morphology change itself. We review what is known about nuclear size regulation and postulate how such nuclear size changes can increase metastasis and why the directionality can differ for particular tumor types.

Keywords: NET; cancer; karyoplasmic ratio; lamin; nuclear size.

Publication types

  • Review

MeSH terms

  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Female
  • Humans
  • Neoplasm Invasiveness*
  • Neoplasm Metastasis*
  • Nuclear Envelope / metabolism
  • Nuclear Proteins / metabolism

Substances

  • Nuclear Proteins