MicroRNAs have been reported to play an important role in tumor development and progression by targeting oncogenes and tumor suppressors. miR-23a has been described as significantly upregulated in multiple cancers and involved in tumorigenesis. The aim of this study was to evaluate the potential roles of miR-23a in pancreatic ductal adenocarcinoma (PDAC). We found that miR-23a level was significantly increased in tissues of PDAC compared with that in the control by real-time PCR. FOXP2 expression was downregulated and inversely correlated with miR-23a. miR-23a directly targeted the 3'-untranslated region of FOXP2 mRNA and repressed its expression. Mechanistically, enhancement of miR-23a by transfection with mimics in Aspc-1 cells significantly promoted cell proliferation and invasion, while miR-23a inhibitors transfection in SW1990 cells induced an inhibitory effect. Moreover, restoration of FOXP2 impaired the pro-proliferation and proinvasion effects of miR-23a, indicating FOXP2 is a direct mediator of miR-23a functions. In conclusion, our findings suggest a novel miR-23a/FOXP2 link contributing to PDAC development and invasion. It may be a potential diagnostic and therapeutic target for PDAC.
Keywords: FOXP2; invasion; miR-23a; proliferation.
© American Federation for Medical Research (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.