Background: Single-particle analysis of electron cryo-microscopy (cryo-EM) is a key technology for elucidation of macromolecular structures. Recent technical advances in hardware and software developments significantly enhanced the resolution of cryo-EM density maps and broadened the applicability and the circle of users. To facilitate modeling of macromolecules into cryo-EM density maps, fast and easy to use methods for modeling are now demanded.
Results: Here we investigated and benchmarked the suitability of a classical and well established fragment-based approach for modeling of segments into cryo-EM density maps (termed FragFit). FragFit uses a hierarchical strategy to select fragments from a pre-calculated set of billions of fragments derived from structures deposited in the Protein Data Bank, based on sequence similarly, fit of stem atoms and fit to a cryo-EM density map. The user only has to specify the sequence of the segment and the number of the N- and C-terminal stem-residues in the protein. Using a representative data set of protein structures, we show that protein segments can be accurately modeled into cryo-EM density maps of different resolution by FragFit. Prediction quality depends on segment length, the type of secondary structure of the segment and local quality of the map.
Conclusion: Fast and automated calculation of FragFit renders it applicable for implementation of interactive web-applications e.g. to model missing segments, flexible protein parts or hinge-regions into cryo-EM density maps.
Keywords: Cryo-EM; Flexible fitting; Fragment based modeling.