In this study, we systematically investigated the effects of thermal air oxidation on the properties of biomass-derived black carbon (BC) made at carbonization temperatures (HTTs) of 300-700°C. BC produced by including air in the carbonization step was found to have a low surface area and underdeveloped pore structure. Substantial changes of BC were observed after post-pyrolysis thermal air oxidation (PPAO). Well-carbonized BC samples made anoxically at relatively high HTTs (600 and 700°C) showed, after PPAO, significant increases in N2 BET surface area (SA) (up to 700 times), porosity (<60Å) (up to 95 times), and adsorptivity (up to 120 times) of neutral organic species including two triazine herbicides and one natural estrogen. Partially carbonized BC made at a lower HTT (300 or 400°C) showed moderate increases in these properties after PPAO, but a large increase in the intensity of Fourier transform infrared spectroscopy bands corresponding to various oxygen-containing functional groups. Well-carbonized BC samples, on the other hand, were deficient in surface oxygen functionality even after the PPAO treatment. Adsorption of the test organic compounds on BC generally trended with BET SA when it was less than 300m2/g, but BET SA was poorly predictive of adsorption when it was greater than 300m2/g. Overall, our results suggest that thermal reactions between molecular oxygen and BC 1) increase surface oxygen functionality more effectively for low-HTT than for high-HTT BC samples; 2) increase SA and porosity (<60Å) especially for high-HTT BC samples; and 3) create new adsorption sites and/or relieve steric restriction of organic molecules to micropores, thereby enhancing the adsorptivity of BC. These results will prove useful not only for understanding the fate of environmental BC but also in devising strategies for improving the practical performance of the engineered form of BC (i.e., biochar).
Keywords: Biochar; Black carbon; Carbon sequestration; Environmental sustainability; Polar functional groups; Porosity enhancement.
Copyright © 2017 Elsevier B.V. All rights reserved.