Background: Pancreatic carcinoma (PC) is an aggressive malignancy that lacks strategies for early detection. This study aimed to develop a coherent, high-throughput and non-discriminatory pipeline for the novel clinical biomarker discovery of PC.
Methods: We combined mass spectrometry (MS)-intensive methods such as isobaric tags for relative and absolute quantitation with two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS), 1D-targeted LC-MS/MS, prime MRM (P-MRM) and stable isotope dilution-based MRM (SID-MRM) to analyse serum samples from healthy people (normal control, NC), patients with benign diseases (BD) and PC patients to identify novel biomarkers of PC.
Results: On the basis of the newly developed pipeline, we identified >1000 proteins, verified 142 differentially expressed proteins and finally targeted four proteins for absolute quantitation in 100 serum samples. The novel biomarker panel of apolipoprotein E (APOE), inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), apolipoprotein A-I (APOA1), apolipoprotein L1 (APOL1), combining with CA19-9, statistically-significantly improved the sensitivity (95%) and specificity (94.1%), outperforming CA19-9 alone, for the diagnosis of PC.
Conclusions: We developed a highly efficient pipeline for biomarker discovery, verification and validation, with each step systematically informing the next. A panel of proteins that might be clinically relevant biomarkers for PC was found.