The Role of CXCR3 in Neurological Diseases

Curr Neuropharmacol. 2019;17(2):142-150. doi: 10.2174/1570159X15666171109161140.

Abstract

Background: Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases.

Methods: English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews.

Results: The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases.

Conclusion: These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.

Keywords: Alzheimer’s disease; CXCL10; CXCR3; chronic pain; multiple sclerosis; neurological disease..

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Movement
  • Cell Survival
  • Disease Models, Animal
  • Humans
  • Nervous System Diseases / etiology
  • Nervous System Diseases / immunology
  • Nervous System Diseases / metabolism*
  • Receptors, CXCR3 / metabolism*
  • T-Lymphocytes / metabolism

Substances

  • CXCR3 protein, human
  • Receptors, CXCR3