Background: The function and the mechanism of long non-coding RNAs (lncRNAs) on the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs) remain largely unknown.
Materials and methods: The expression of lnc-NTF3-5 and Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and Alkaline Phosphatase (ALP) was examined by quantitative real-time PCR (qRT-PCR) in MSMSCs during the process osteogenic differentiation. Then the function of lnc-NTF3-5 was evaluated by loss- and gain-of-function techniques, as well as qRT-PCR, western blot, and Alizarin Red staining. In addition, the microRNAs (miRNAs) sponge potential of lnc-NTF3-5 was assessed through RNA immunoprecipitation, dual luciferase reporter assay, and in vivo ectopic bone formation.
Results: Lnc-NTF3-5, RUNX2, OSX, and ALP increased alone with the differentiation. Inhibition of lnc-NTF3-5 decreased the expression of RUNX2, OSX, and ALP both at mRNA and protein levels. Alizarin red staining showed similar trend. In contrast, overexpression of lnc-NTF3-5 presented totally opposite effects. Besides, overexpression of lnc-NTF3-5 could decrease the expression of microRNA-93-3p (miR-93-3p). Enhance miR-93-3p could also inhibit the expression level of lnc-NTF3-5. RNA immunoprecipitation demonstrated that lnc-NTF3-5 is directly bound to miR-93-3p and dual luciferase reporter assay proved that miR-93-3p targets 3' UTR of RUNX2 to regulate its expression. Ultimately, in vivo bone formation study showed that lnc-NTF3-5 and miR-93-3p inhibitor co-transfection group displayed the strongest bone formation.
Conclusions: The novel pathway lnc-NTF3-5/miR-93-3p/RUNX2 could regulate osteogenic differentiation of MSMSCs and might serve as a therapeutic target for bone regeneration in the posterior maxilla.
Keywords: long non-coding RNAs; maxillary sinus membrane stem cells; microRNAs; osteogenic differentiation.
© 2017 The Authors Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.