Fast Fourier transform (FFT) based approaches have been successful in application to modeling of relatively rigid protein-protein complexes. Recently, we have been able to adapt the FFT methodology to treatment of flexible protein-peptide interactions. Here, we report our latest attempt to expand the capabilities of the FFT approach to treatment of flexible protein-ligand interactions in application to the D3R PL-2016-1 challenge. Based on the D3R assessment, our FFT approach in conjunction with Monte Carlo minimization off-grid refinement was among the top performing methods in the challenge. The potential advantage of our method is its ability to globally sample the protein-ligand interaction landscape, which will be explored in further applications.
Keywords: D3R; Drug design data resource; FFT sampling; Protein ligand docking.