The phenotypic switch of vascular smooth muscle cells (VSMCs) is a key event in the pathogenesis of various vascular diseases, such as atherosclerosis and post-angioplasty restenosis. Small non-coding microRNAs (miRNAs) have emerged as critical modulators of VSMC function. In the present study, miR-26a was significantly increased in cultured VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB) and in arteries with neointimal lesion formation. Moreover, we demonstrated that miR-26a regulates the expression of VSMC differentiation marker genes such as α-smooth muscle actin (α-SMA), calponin and smooth muscle myosin heavy chain (SM-MHC) in PDGF-BB-treated VSMCs. We further confirmed that the regulatory effect of miR-26a during the phenotypic transition occurs through its target gene Smad1, which is a critical mediator of the pro-contractile signal transmitted by bone morphogenetic protein (BMP) and transforming growth factor-beta (TGF-β). This discovery proposed a new channel for communication between PDGF and the BMP/TGF-β family. We concluded that miR-26a is an important regulator in the PDGF-BB-mediated VSMC phenotypic transition by targeting Smad1. Interventions aimed at miR-26a may be promising in treating numerous proliferative vascular disorders.
Keywords: PDGF-BB; miR-26a; phenotype; vascular disease; vascular smooth muscle cells.