Inflammation is one of the important risk factors of rheumatic diseases. Aconiti Radix is widely used for the treatment of rheumatism, which has significant anti-inflammatory effects. However, its anti-inflammatory mechanism on molecular level is still not clear. The purpose of this study is to illuminate the anti-inflammatory mechanism of Aconiti Radix based on the protein interaction network (PIN) analysis on molecular network level. The main anti-inflammatory components (aconitine, hypaconitine and mesaconitine) were chosen in this study to obtain the targets of the components and protein-protein information though databases retrieval and construct the PIN of Aconiti Radix. By a graph theoretic clustering algorithm molecular complex detection(MCODE), 13 modules were identified and analyzed by gene ontology(GO) enrichment. The results showed that the anti-inflammatory mechanism of Aconiti Radix was mainly associated with prostanoid metabolic process and leukocyte chemotaxis mediated by chemokines. In this study, the anti-inflammatory mechanism of Aconiti Radix was elucidated systematically from molecular network level, which provided the scientific basis for the treatment of rheumatic diseases.
Keywords: Aconiti Radix; anti-inflammatory mechanism; functional modules; protein interaction network; rheumatism.
Copyright© by the Chinese Pharmaceutical Association.