Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation

Nano Lett. 2017 Nov 8;17(11):6752-6758. doi: 10.1021/acs.nanolett.7b02910. Epub 2017 Oct 30.

Abstract

A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH2, pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N2 molecules (kinetic diameter, 0.364 nm) from smaller CO2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO2 separation performance by simultaneously increasing CO2 permeability (CO2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO2/N2 selectivity (CO2/N2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using dual-channel molecular sieving core/shell porous crystals in hybrid membranes thus provides a promising means for CO2 capture from flue gas.

Keywords: CO2 capture; Metal organic frameworks; core/shell; hybrid membrane.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.