Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients

Sci Transl Med. 2017 Oct 25;9(413):eaao4583. doi: 10.1126/scitranslmed.aao4583.

Abstract

Pulmonary arterial hypertension (PAH) is a progressive vascular disease with a high mortality rate. It is characterized by an occlusive vascular remodeling due to a pro-proliferative and antiapoptotic environment in the wall of resistance pulmonary arteries (PAs). Proliferating cells exhibit a cancer-like metabolic switch where mitochondrial glucose oxidation is suppressed, whereas glycolysis is up-regulated as the major source of adenosine triphosphate production. This multifactorial mitochondrial suppression leads to inhibition of apoptosis and downstream signaling promoting proliferation. We report an increase in pyruvate dehydrogenase kinase (PDK), an inhibitor of the mitochondrial enzyme pyruvate dehydrogenase (PDH, the gatekeeping enzyme of glucose oxidation) in the PAs of human PAH compared to healthy lungs. Treatment of explanted human PAH lungs with the PDK inhibitor dichloroacetate (DCA) ex vivo activated PDH and increased mitochondrial respiration. In a 4-month, open-label study, DCA (3 to 6.25 mg/kg b.i.d.) administered to patients with idiopathic PAH (iPAH) already on approved iPAH therapies led to reduction in mean PA pressure and pulmonary vascular resistance and improvement in functional capacity, but with a range of individual responses. Lack of ex vivo and clinical response was associated with the presence of functional variants of SIRT3 and UCP2 that predict reduced protein function. Impaired function of these proteins causes PDK-independent mitochondrial suppression and pulmonary hypertension in mice. This first-in-human trial of a mitochondria-targeting drug in iPAH demonstrates that PDK is a druggable target and offers hemodynamic improvement in genetically susceptible patients, paving the way for novel precision medicine approaches in this disease.

Publication types

  • Clinical Trial

MeSH terms

  • Administration, Oral
  • Adolescent
  • Adult
  • Biomarkers / metabolism
  • Dichloroacetic Acid / administration & dosage
  • Dichloroacetic Acid / blood
  • Dichloroacetic Acid / pharmacology
  • Dichloroacetic Acid / therapeutic use
  • Familial Primary Pulmonary Hypertension / drug therapy*
  • Familial Primary Pulmonary Hypertension / enzymology*
  • Familial Primary Pulmonary Hypertension / genetics*
  • Familial Primary Pulmonary Hypertension / physiopathology
  • Female
  • Genetic Predisposition to Disease*
  • Hemodynamics / drug effects
  • Humans
  • Lung / drug effects
  • Lung / enzymology
  • Lung / pathology
  • Male
  • Middle Aged
  • Perfusion
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use*
  • Protein Serine-Threonine Kinases / antagonists & inhibitors*
  • Protein Serine-Threonine Kinases / metabolism
  • Pulmonary Artery / drug effects
  • Pulmonary Artery / enzymology
  • Pulmonary Artery / pathology
  • Pulmonary Artery / physiopathology
  • Pyruvate Dehydrogenase Acetyl-Transferring Kinase
  • Sirtuin 3 / metabolism
  • Uncoupling Protein 2 / metabolism
  • Up-Regulation / drug effects
  • Young Adult

Substances

  • Biomarkers
  • Protein Kinase Inhibitors
  • Pyruvate Dehydrogenase Acetyl-Transferring Kinase
  • Uncoupling Protein 2
  • Dichloroacetic Acid
  • Protein Serine-Threonine Kinases
  • Sirtuin 3