Background: Massively parallel DNA sequencing, such as exome sequencing, has become a routine clinical procedure to identify pathogenic variants responsible for a patient's phenotype. Exome sequencing has the capability of reliably identifying inherited and de novo single-nucleotide variants, small insertions, and deletions. However, due to the use of 100-300-bp fragment reads, this platform is not well powered to sensitively identify moderate to large structural variants (SV), such as insertions, deletions, inversions, and translocations.
Methods: To overcome these limitations, we used next-generation mapping (NGM) to image high molecular weight double-stranded DNA molecules (megabase size) with fluorescent tags in nanochannel arrays for de novo genome assembly. We investigated the capacity of this NGM platform to identify pathogenic SV in a series of patients diagnosed with Duchenne muscular dystrophy (DMD), due to large deletions, insertion, and inversion involving the DMD gene.
Results: We identified deletion, duplication, and inversion breakpoints within DMD. The sizes of deletions were in the range of 45-250 Kbp, whereas the one identified insertion was approximately 13 Kbp in size. This method refined the location of the break points within introns for cases with deletions compared to current polymerase chain reaction (PCR)-based clinical techniques. Heterozygous SV were detected in the known carrier mothers of the DMD patients, demonstrating the ability of the method to ascertain carrier status for large SV. The method was also able to identify a 5.1-Mbp inversion involving the DMD gene, previously identified by RNA sequencing.
Conclusions: We showed the ability of NGM technology to detect pathogenic structural variants otherwise missed by PCR-based techniques or chromosomal microarrays. NGM is poised to become a new tool in the clinical genetic diagnostic strategy and research due to its ability to sensitively identify large genomic variations.
Keywords: Bionano; DMD; Duchenne muscular dystrophy; Nanochannel; Next-generation mapping; Optical mapping; Structural variants.