In an attempt to enhance the previously observed antiproliferative capacity of 1-(p-toluenesulfonyl)cytosine (N-1-tosylcytosine, ligand 1), its copper(II) complex (Cu(1-TsC-N3)2Cl2, complex 2) was prepared and tested in vitro on various carcinoma and leukemia cells. The comparative in vitro studies using the ligand 1, the complex 2, CuCl2x2H2O salt (salt 3) and the 1:2 mixture of the salt 3 and ligand 1 (mixture 4) were performed on normal (WI38), human carcinoma (HeLa, CaCo2, MiaPaCa2, SW620), lymphoma (Raji) and leukemia (K562) cell lines. Significantly elevated concentration of the intracellular copper after treatment of K562 cells and HeLa cells during 2h with complex 2 (7.83 vs. 5.4 times) was detected by atomic absorption spectroscopy. Cytotoxicity was analyzed by MTT assay. We found that antiproliferative capacity of the tested compounds varies (IC50 after 72h of exposure: 0.6×10-6M to>100×10-6M). Leukemia and lymphoma cells were found the most sensitive to complex 2 which showed more than 100 times higher in vitro activity against K562 cells than ligand 1. Apoptotic morphological changes, an externalization of phosphatydilserine, and changes in the mitochondrial membrane potential of treated cells were found. The caspase-3 activity in HeLa and K562 cells was measured by caspase-3 colorimetric assay kit. Caspase-3 was not activated in the treated K562 cells while salt 3 and the mixture 4 in the HeLa cells significantly increased tested enzyme activity. These findings suggest that copper(II) in the molecular complex 2 by improving entry of the N-1-tosylcytosine 1 into cells increases its antiproliferative capacity. In summary, the present study demonstrated that complex 2 possesses an antileukemic effect on K562 cells, and its anticancer activity was attributed with induction of apoptosis. The exact mechanism of apoptosis induction by complex 2 must be further investigated.
Keywords: Apoptosis; Copper(II) complex; In vitro antitumor activity; N-1-tosylcytosine.
Copyright © 2017 Elsevier GmbH. All rights reserved.