Toward the Elucidation of the Competing Role of Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-methylimidazolium Hexafluorophosphate under Effusion Conditions

J Phys Chem B. 2017 Nov 16;121(45):10382-10393. doi: 10.1021/acs.jpcb.7b08523. Epub 2017 Nov 3.

Abstract

The evaporation/decomposition behavior of the imidazolium ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF6) was investigated in the overall temperature range 425-551 K by means of the molecular-effusion-based techniques Knudsen effusion mass loss (KEML) and Knudsen effusion mass spectrometry (KEMS), using effusion orifices of different size (from 0.2 to 3 mm in diameter). Specific effusion fluxes measured by KEML were found to depend markedly on the orifice size, suggesting the occurrence of a kinetically delayed evaporation/decomposition process. KEMS experiments revealed that other species are present in the vapor phase besides the intact ion pair BMImPF6(g) produced by the simple evaporation BMImPF6(l) = BMImPF6(g), with relative abundances depending on the orifice size-the larger the orifice, the larger the contribution of the BMImPF6(g) species. By combining KEML and KEMS results, the conclusion is drawn that in the investigated temperature range, when small effusion orifices are used, a significant part of the mass loss/volatility of BMImPF6 is due to molecular products formed by decomposition/dissociation processes rather than to evaporated intact ion pairs. Additional experiments performed by nonisothermal thermogravimetry-differential thermal analysis (TG-DTA) further support the evidence of simultaneous evaporation/decomposition, although the conventional decomposition temperature derived from TG curves is much higher than the temperatures covered in effusion experiments. Partial pressures of the BMImPF6(g) species were derived from KEMS spectra and analyzed by second- and third-law methods giving a value of ΔevapH298K° = 145.3 ± 2.9 kJ·mol-1 for the standard evaporation enthalpy of BMImPF6. A comparison is done with the behavior of the 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf2) ionic liquid.

Publication types

  • Research Support, Non-U.S. Gov't