Development of an athyroid mouse model using 131I ablation after preparation with a low-iodine diet

Sci Rep. 2017 Oct 16;7(1):13284. doi: 10.1038/s41598-017-13772-8.

Abstract

We optimized the protocol for thyroid ablation in living mice using radioactive iodine (RAI) and a low-iodine diet (LID). To examine the effect of LID on thyroid ablation, mice were randomly divided into 4 groups: Vehicle, 131I 2.775 MBq, 131I 5.55 MBq, and LID + 131I 2.775 MBq. The LID group was fed a LID for up to 7 days and then mice in the 131I 2.775, 131I 5.55, and LID + 131I 2.775 MBq groups were intravenously administrated with 131I, respectively. Scintigraphy imaging with 99mTc pertechnetate was performed once in 2 weeks for 4 weeks. After establishment of athyroid mice, control or athyroid mice were injected with human anaplastic thyroid cancer cells co-expressing sodium iodine symporter and enhanced firefly luciferase (ARO/NF) to evaluate RAI uptake. Scintigraphy imaging with 99mTc pertechnetate was performed with ARO/NF tumor-bearing mice. Scintigraphy imaging showed decreased thyroid uptake in the LID + 131I 2.775 MBq group compared to other groups. Scintigraphy images showed that tumor uptake was statically higher in athyroid mice than in control mice. These data suggest that these optimized conditions for thyroid ablation could be helpful to establish an in vivo mouse model.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ablation Techniques*
  • Animals
  • Diet*
  • Disease Models, Animal
  • Female
  • Iodine / administration & dosage*
  • Iodine Radioisotopes / administration & dosage*
  • Mice
  • Models, Animal*
  • Radionuclide Imaging / methods
  • Radiopharmaceuticals
  • Sodium Pertechnetate Tc 99m
  • Thyroid Gland / diagnostic imaging
  • Thyroid Gland / metabolism
  • Thyroid Gland / pathology
  • Thyroid Neoplasms / diagnosis
  • Thyroid Neoplasms / pathology
  • Thyroid Neoplasms / therapy
  • Thyroxine / blood

Substances

  • Iodine Radioisotopes
  • Radiopharmaceuticals
  • Iodine
  • Sodium Pertechnetate Tc 99m
  • Thyroxine