Several microbial molecules with pathogen-associated molecular patterns stimulate host innate immune responses. The innate immune system plays a crucial role in activating acquired immune response via cytokine production and antigen presentation. Previous studies have shown that Aureobasidium pullulans-cultured fluid (AP-CF), which contains β-glucan, exhibits adjuvant activity and renders mice resistance to influenza A virus infection; however, the underlying mechanism remains elusive. In this study, we investigated the innate immune response to AP-CF. We found that intraperitoneal administration of AP-CF increased the serum level of IL-18 and the number of splenic IFN-γ producing CD4+ cells during influenza A virus infection. The adjuvant effect of AP-CF was distinct from that of alum, which is known to have the ability to stimulate a Th2 immune response. In addition, AP-CF injection barely increased the number of peritoneal neutrophils and inflammatory macrophages, whereas alum injection markedly increased the number of neutrophils and inflammatory macrophages, suggesting that AP-CF is a weak inducer of inflammation compared to alum. AP-CF induced IL-18 production by DC2.4 cells, a dendritic cell line, and by peritoneal exudate cells that include peritoneal macrophages. Collectively, our findings indicate that AP-CF is an adjuvant that promotes the Th1 response during influenza A virus infection.
Keywords: Aureobasidium pullulans; adjuvant; infection; influenza A virus; innate immunity.
© The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.